Robust local features for remote face recognition
نویسندگان
چکیده
منابع مشابه
Robust local features for remote face recognition
Article history: Received 25 October 2015 Received in revised form 28 March 2017 Accepted 13 May 2017 Available online 31 May 2017 In this paper, we propose a robust local descriptor for face recognition. It consists of two components, one based on a shearlet-decomposition and the other on local binary pattern (LBP). Shearlets can completely analyze the singular structures of piecewise smooth i...
متن کاملGlobal and Local Features for Face Recognition
Face recognition, means checking for the presence of a face from a database that contains many faces and could be performed using the different features. The face images considered for recognition undergo large variations due to changes in the illumination conditions, viewing direction, facial expression and aging. The face images have similar geometrical features. Hence, it is a challenging ta...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملRobust Face Recognition through Local Graph Matching
A novel face recognition method is proposed, in which face images are represented by a set of local labeled graphs, each containing information about the appearance and geometry of a 3-tuple of face feature points, extracted using Local Feature Analysis (LFA) technique. Our method automatically learns a model set and builds a graph space for each individual. A two-stage method for optimal match...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2017
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2017.05.006